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Short title: Omicron variant increases reinfection risk 

 

One sentence summary: Analysis of routine surveillance data from South Africa 

suggests that, in contrast to the Beta and Delta, the Omicron variant of SARS-CoV-2 

demonstrates substantial population-level evidence for evasion of immunity from 

prior infection. 
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Abstract 

Objective To examine whether SARS-CoV-2 reinfection risk has changed through 

time in South Africa, in the context of the emergence of the Beta, Delta, and Omicron 

variants 

Design Retrospective analysis of routine epidemiological surveillance data 

 

Setting Line list data on SARS-CoV-2 with specimen receipt dates between 04 

March 2020 and 27 November 2021, collected through South Africa’s National 

Notifiable Medical Conditions Surveillance System 

Participants 2,796,982 individuals with laboratory-confirmed SARS-CoV-2 who had 

a positive test result at least 90 days prior to 27 November 2021. Individuals having 

sequential positive tests at least 90 days apart were considered to have suspected 

reinfections. 

Main outcome measures Incidence of suspected reinfections through time; 

comparison of reinfection rates to the expectation under a null model (approach 1); 

empirical estimates of the time-varying hazards of infection and reinfection 

throughout the epidemic (approach 2) 

Results 35,670 suspected reinfections were identified among 2,796,982 individuals 

with laboratory-confirmed SARS-CoV-2 who had a positive test result at least 90 

days prior to 27 November 2021. The number of reinfections observed through the 

end of the third wave was consistent with the null model of no change in reinfection 

risk (approach 1). Although increases in the hazard of primary infection were 

observed following the introduction of both the Beta and Delta variants, no 

corresponding increase was observed in the reinfection hazard (approach 2). 

Contrary to expectation, the estimated hazard ratio for reinfection versus primary 
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infection was lower during waves driven by the Beta and Delta variants than for the 

first wave (relative hazard ratio for wave 2 versus wave 1: 0.75 (CI95: 0.59–0.97); for 

wave 3 versus wave 1: 0.71 (CI95: 0.56–0.92)). In contrast, the recent spread of the 

Omicron variant has been associated with a decrease in the hazard coefficient for 

primary infection and an increase in reinfection hazard coefficient. The estimated 

hazard ratio for reinfection versus primary infection for the period from 1 November 

2021 to 27 November 2021 versus wave 1 was 2.39 (CI95: 1.88–3.11). 

Conclusion Population-level evidence suggests that the Omicron variant is 

associated with substantial ability to evade immunity from prior infection. In contrast, 

there is no population-wide epidemiological evidence of immune escape associated 

with the Beta or Delta variants. This finding has important implications for public 

health planning, particularly in countries like South Africa with high rates of immunity 

from prior infection. Urgent questions remain regarding whether Omicron is also able 

to evade vaccine-induced immunity and the potential implications of reduced 

immunity to infection on protection against severe disease and death. 

 

Box 1 

What is already known on this topic 
• Prior infection with SARS-CoV-2 is estimated to provide at least an 80% 

reduction in infection risk (1,2). 

• Laboratory-based studies indicate reduced neutralization by convalescent 
serum for the Beta and Delta variants relative to wild type virus (3–6); 
however, the impact of these reductions on risk of reinfection is not known, 
and laboratory assessments of Omicron are still underway. 

What this study adds 
• We provide two methods for monitoring reinfection trends to identify 

signatures of changes in reinfection risk. 

• We find no evidence of increased reinfection risk associated with circulation of 
Beta or Delta variants compared to the ancestral strain in routine 
epidemiological data from South Africa. 
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• In contrast, we find clear, population-level evidence to suggest substantial 
immune evasion by the Omicron variant. 
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Introduction 

As of 27 November 2021, South Africa had nearly three million cumulative 
 

laboratory-confirmed cases of SARS-CoV-2, concentrated in three waves of infection 

(Figure 1). The first case was detected in early March 2020 and was followed by a 

wave that peaked in July 2020 and ended in September. The second wave, which 

peaked in January 2021 and ended in February, was driven by the Beta (B.1.351 / 

501Y.V2 / 20H) variant, which was first detected in South Africa in October 2020 (7). 

The third wave, which peaked in July and ended in September 2021, was dominated 

by the Delta (B.1.617.2 / 478K.V1 / 21A) variant (8). In late November 2021, the 

Omicron (B.1.1.529 / 21K) variant was detected in Gauteng Province and associated 

with rapidly increasing case numbers (9). The estimated effective reproduction 

number in Gauteng based on PCR-confirmed cases was 2.3 as of 18 November, 

which is as high as has been seen at any point during the three waves to date (10). 

While the proportion of positive PCR tests with S-gene target failure (SGTF) 

associated with Omicron has subsequently increased in most provinces, as of 30 

November 2021 Gauteng is the epicenter of the Omicron resurgence. 

The Omicron variant is characterized by between 26 and 32 mutations in the 

spike protein many of which are located within the receptor binding domain (RBD). In 

addition Omicron has 3 deletions and one insertion in the spike protein, and 

mutations outside of the spike protein. Many of the mutations are either known or 

predicted to contribute to escape from neutralizing antibodies, and work on earlier 

variants of concern (VOC) has demonstrated that such variants can be antigenically 

very distinct (6). 

Following emergence of three variants of concern in South Africa, a key 

question remains of whether there is epidemiologic evidence of increased risk of 
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SARS-CoV-2 reinfection with these variants (i.e., immune escape from natural 

infection). Laboratory-based studies suggest that convalescent serum has a reduced 

neutralizing effect on the Beta and Delta variants compared to wild type virus in vitro 

(3–6); however, this finding does not necessarily translate into immune escape at the 

population level. Laboratory neutralization studies for Omicron are ongoing. 

To examine whether reinfection risk has changed through time, it is essential 

to account for potential confounding factors affecting the incidence of reinfection: 

namely, the changing force of infection experienced by all individuals in the 

population and the growing number of individuals eligible for reinfection through time. 

These factors are tightly linked to the timing of epidemic waves. We examine 

reinfection trends in South Africa using two approaches that account for these 

factors to address the question of whether circulation of the Beta, Delta, or Omicron 

variants has been associated with increased reinfection risk, as would be expected if 

their emergence was driven by immune escape. 

 

Methods 

Data sources 

Data analysed in this study come from two sources maintained by the National 

Institute for Communicable Diseases (NICD): the outbreak response component of 

the Notifiable Medical Conditions Surveillance System (NMC-SS) deduplicated case 

list and the line list of repeated SARS-CoV-2 tests. All positive tests conducted in 

South Africa appear in the combined data set, regardless of the reason for testing or 

type of test (PCR or antigen detection), and include the large number of positive 

tests that were retrospectively added to the data set on 23 November 2021 (11). 
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A combination of deterministic (national ID number, names, dates of birth) and 

probabilistic linkage methods were utilized to identify repeated tests conducted on 

the same person. In addition, provincial COVID-19 contact tracing teams identify and 

report repeated SARS-CoV-2 positive tests to the NICD, whether detected via PCR 

or antigen tests. The unique COVID-19 case identifier which links all tests from the 

same person was used to merge the two datasets. Irreversibly hashed case IDs 

were generated for each individual in the merged data set. 

Primary infections and suspected repeat infections were identified using the 

merged data set. Repeated case IDs in the line list were identified and used to 

calculate the time between consecutive positive tests for each individual, using 

specimen receipt dates. If the time between sequential positive tests was at least 90 

days, the more recent positive test was considered to indicate a suspected new 

infection. We present a descriptive analysis of suspected third and fourth infections, 

although only suspected second infections (which we refer to as “reinfections”) were 

considered in the analyses of temporal trends. Incidence time series for primary 

infections and reinfections are calculated by specimen receipt date of the first 

positive test associated with the infection, and total observed incidence is calculated 

as the sum of first infections and reinfections. The specimen receipt date was 

chosen as the reference point for analysis because it is complete within the data set; 

however, problems have been identified with accuracy of specimen receipt dates for 

tests associated with substantially delayed reporting from some laboratories. For 

these tests, which had equivalent entries for specimen receipt date and specimen 

report date that were more than 7 days after the sample collection date, the 

specimen receipt date was adjusted to be 1 day after the sample collection date, 

reflecting the median delay across all tests. 
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All analyses were conducted in the R statistical programming language (R 

version 4.0.5 (2021-03-31)). 

Timing of reinfections 

We calculated the time between successive infections as the number of days 

between the last positive test associated with an individual’s first identified infection 

(i.e., within 90 days of a previous positive test, if any) and the first positive test 

associated with their suspected second infection (i.e., at least 90 days after the most 

recent positive test). We analyzed the distribution of these times for all second 

infections, and for the subset of second infections occurring since 1 October. 

Statistical analysis of reinfection trends 

We analysed the NICD national SARS-CoV-2 routine surveillance data to evaluate 

whether reinfection risk has changed since emergence of the Beta, Delta, or 

Omicron variants. We evaluated the daily numbers of suspected reinfections using 

two approaches. First, we constructed a simple null model based on the assumption 

that the reinfection hazard experienced by previously diagnosed individuals is 

proportional to the incidence of detected cases and fit this model to the pattern of 

reinfections observed before the emergence of the Beta variant (through 30 

September 2020). The null model assumes no change in the reinfection hazard 

coefficient through time. We then compared observed reinfections after September 

2020 to expected reinfections under the null model. 

Second, we evaluated whether there has been a change in the relative hazard 

of reinfection versus primary infection, to distinguish between increased overall 

transmissibility of the variants and any additional risk of reinfection due to potential 

immune escape. To do this, we calculated an empirical hazard coefficient at each 
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time point for primary infections and reinfections and compared their relative values 

through time. 

Approach 1: Catalytic model assuming a constant reinfection hazard 
coefficient 

Model description For a case testing positive on day 𝑡 (by specimen receipt date), 

we assumed the reinfection hazard is 0 for each day from 𝑡 + 1 to 𝑡 + 90 and 𝜆𝐶(
!  for 

each day 𝜏 > 𝑡 + 90, where 𝐶(
!  is the 7-day moving average of the detected case 

incidence (first infections and reinfections) for day 𝜏. The probability of a case testing 

positive on day 𝑡 having a diagnosed reinfection by day 𝑥 is thus 𝑝(𝑡, 𝑥) = 1 − 

!"# 
!"$%&' $%&

! , and the expected number of cases testing positive on day 𝑡 that have 
 

had a diagnosed reinfection by day 𝑥 is 𝐶(𝑝(𝑡, 𝑥), where 𝐶( is the detected case 
' ' 

 

incidence (first infections only) for day 𝑡. Thus, the expected cumulative number of 
 

reinfections by day 𝑥 is 𝑌) = ∑'*) 𝐶(𝑝(𝑡, 𝑥). The expected daily incidence of 
'*+     ' 

 

reinfections on day 𝑥 is 𝐷) = 𝑌) − 𝑌)"(. 

 
Model fitting The model was fitted to observed reinfection incidence through 

30 September 2020 or 28 February 2021 assuming data are negative binomially 

distributed with mean 𝐷). The reinfection hazard coefficient (𝜆) and the inverse of the 

negative binomial dispersion parameter (𝜅) are fitted to the data using a Metropolis- 

Hastings Monte Carlo Markov Chain (MCMC) estimation procedure implemented in 

the R Statistical Programming Language. We ran 4 MCMC chains with random 

starting values for a total of 1e+05 iterations per chain, discarding the first 2,000 

iterations (burn-in). Convergence was assessed using the Gelman-Rubin diagnostic 

(12). 

Model-based projection We used 1,500 samples from the joint posterior 

distribution of fitted model parameters to simulate possible reinfection time series 

𝑒" ∑ 
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, 

under the null model, generating 100 stochastic realizations per parameter set. We 

then calculated projection intervals as the middle 95% of daily reinfection numbers 

across these simulations. 

We applied this approach at the national level, as well as to Gauteng, 

KwaZulu-Natal, and Western Cape Provinces, which were the only provinces with a 

sufficient number of reinfections during the fitting period to permit estimation of the 

reinfection hazard coefficient. 

Approach 2: Empirical estimation of time-varying infection and reinfection 
hazards 

We estimated the time-varying empirical hazard of infection as the daily incidence 

per susceptible individual. This approach requires reconstruction of the number of 

susceptible individuals through time. We distinguish between three “susceptible” 

groups: naive individuals who have not yet been infected (𝑆(), previously infected 

individuals who had undiagnosed infections (𝑆-), and previously infected individuals 

who had a prior positive test at least 90 days ago (𝑆,). We estimate the numbers of 

individuals in each of these categories on day 𝑡 as follows: 

.*' 

𝑆 (𝑡) = 𝑁 − 9
 𝐶. 

 
( 

.*+ 
𝑝/01 

 

 
𝑆-(𝑡) = (1 − 𝑝 

.*' 

) 9
 𝐶.   

, /01  
.*+ 

𝑝/01 

 
.*'"2+ 

𝑆 (𝑡) =  9 𝐶 
.*' 

− 9
 𝑋.  

, 

.*+ 

. 

.*+ 
𝑝/01( 

 

where 𝑁 is the total population size, 𝐶. is the number of individuals with their first 

positive test on day 𝑖, 𝑝/01 is the probability of detection for individuals who have not 
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, 

( 

, 

had a previously identified infection, 𝑝/01( is the probability of detection for 

individuals who have had a previously identified infection, and 𝑋. is the number of 

individuals with a detected reinfection on day 𝑖. For the main analysis, we assume 

𝑝/01 = 0.1 and 𝑝/01( 
= 0.5, although the conclusions are robust to these assumptions 

(see Figure S8). 

Individuals in 𝑆-  and 𝑆, are assumed to experience the same daily hazard of 
 

reinfection, estimated as ℎ, (𝑡) = 
34$/6)*+(. The daily hazard of infection for previously 

7((') 
 

uninfected individuals is then estimated as ℎ (𝑡) = 
%&$/6)*+":(!

7,(')
.
 

( 7-(') 

 

If we assume that the hazard of infection is proportional to incidence (𝐼'), 

ℎ((𝑡) = 𝜆((𝑡)𝐼'  and ℎ,(𝑡) = 𝜆,(𝑡)𝐼', we can then examine the infectiousness of the 

virus through time as: 

 
𝜆( 

 

 
𝜆, 

(𝑡) =
  ℎ((𝑡)

 (𝐶@'/𝑝/01 + 
𝑋B'/𝑝/01(

) 

 

(𝑡) = 
  ℎ,(𝑡)  

(𝐶@'/𝑝/01 + 𝑋B'/𝑝/01(
) 

 

We also used this approach to construct a data set with the daily numbers of 

individuals eligible to have a suspected second infection (𝑆,(𝑡)) and not eligible for 

suspected second infection (𝑆((𝑡) + 𝑆-(𝑡)) by wave. Wave periods were defined as 

the time surrounding the wave peak for which the 7-day moving average of case 

numbers was above 15% of the wave peak. We then analyzed these data using a 

generalized linear mixed model to estimate the relative hazard of infection in the 

population eligible for suspected second infection, compared to the hazard in the 

population not eligible for suspected second infection. 
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Our primary model was a Poisson model with a log link function, 

groupinc = Poisson(𝜇): 𝑙𝑜𝑔(𝜇) ∼ group ∗ wave + offset(𝑙𝑜𝑔(groupsize)) + (day) 

The outcome variable (groupinc) was the daily number of observed infections 

in the two groups. Our main interest for this analysis was in whether the relative 

hazard was higher in the second wave, third wave, and/or the post-third-wave period 

in which Omicron has emerged (defined as 01 November 2021 to the end of the data 

set on 27 November 2021), relative to during the first wave, thus potentially 

indicating immune escape. This effect is measured by the interaction term between 

group and wave. The offset term is used to ensure that the estimated coefficients 

can be appropriately interpreted as per capita rates. We used day as a proxy for 

force of infection and reporting patterns and examined models where day was 

represented as a random effect (to reflect that observed days can be thought of as 

samples from a theoretical population) and as a fixed effect (to better match the 

Poisson assumptions). As focal estimates from the two models were 

indistinguishable, we present only the results based on the random effect 

assumption. 

Finally, we conducted a sensitivity analysis to assess the potential impact of 

vaccine rollout on the observed trend in the primary infection hazard coefficient. The 

approach used and results are presented in the Supplementary Material. 

 

Results 

We identified 35,670 individuals with at least two suspected infections (through 27 

November 2021), 332 individuals with suspected third infections, and 1 individual 

with four suspected infections. 
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Figure 1. Daily numbers of detected primary infections, individuals eligible to be considered for 
reinfection, and suspected reinfections in South Africa. A: Time series of detected primary infections. 
Black line indicates 7-day moving average; black points are daily values. Colored bands represent 
wave periods, defined as the period for which the 7-day moving average of cases was at least 15% of 
the corresponding wave peak (purple = wave 1, pink = wave 2, orange = wave 3). B: Population at 
risk for reinfection (individuals whose most recent positive test was at least 90 days ago and who 
have not yet had a suspected reinfection). C: Time series of suspected reinfections. Blue line 
indicates 7-day moving average; blue points are daily values. 

 

Descriptive analysis 

Time between successive positive tests 

The time between successive positive tests for individuals with suspected 

reinfections was bimodally distributed with peaks near 180 and 360 days (Figure 

2A). The shape of the distribution was strongly influenced by the timing of South 
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Africa’s epidemic waves. The first peak corresponds to individuals initially infected in 

wave 1 and reinfected in wave 2 or initially infected in wave 2 and reinfected in wave 

3, while the second peak corresponds to individuals initially infected in wave 1 and 

reinfected in wave 3. 

More recent second infections (i.e., those occurring after 31 October 2021) 

show a slightly different pattern (Figure 2B), with the highest number of these 

reinfections occurring in individuals whose primary infection occurred during the third 

wave but also, since mid-November, reinfections in individuals whose primary 

infection occurred during the first and second waves. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Time between detection of first and second infections. A: Time in days between infections 
for individuals with suspected reinfection. Note that the time since the previous positive test must be 
at least 90 days. Colors represent suspected reinfections diagnosed since 1 November 2021. B: Time 
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in days between infections for individuals with suspected reinfections diagnosed since 1 November 
2021. Bars for these individuals are colored by the wave during which the primary infection occurred 
in both panels (purple = wave 1, pink = wave 2, orange = wave 3). 

 

Individuals with multiple suspected reinfections 

332 individuals were identified who had three suspected infections. Most of these 

individuals initially tested positive during the first wave, with suspected reinfections 

associated with waves two and three (Figure 3). One of these individuals had four 

suspected infections. Among the individuals who have had more than one 

reinfection, 47 (14.2%) experienced their third infection in November 2021, which 

suggests that many third infections are associated with transmission of the Omicron 

variant (Figure 3). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Timing of infections for individuals with multiple suspected reinfections. Circles represent 
the first positive test of the first detected infection; triangles represent the first positive test of the 
suspected second infection; squares represent the first positive test of the suspected third infection. 
Colored bands represent wave periods, defined as the period for which the 7-day moving average of 
cases was at least 15% of the corresponding wave peak (purple = wave 1, pink = wave 2, orange = 
wave 3). 

 

Reinfection trends 

The population at risk of reinfection has risen monotonically since the beginning of 

the epidemic, with relatively rapid increases associated with each wave, following a 
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90-day delay (Figure 1B). The first individual became eligible for reinfection on 02 

June 2020 (i.e., 90 days after the first case was detected). No suspected reinfections 

were detected until 23 June 2020, after which the number of suspected reinfections 

increased gradually. The 7-day moving average of suspected reinfections reached a 

peak of 162.6 during the second epidemic wave and a maximum of 349.1 during the 

third wave, as of 19 September 2021 (Figure 1). Reinfections have begun to 

increase again since the end of the third wave, with the 7-day moving average of 

suspected reinfections reaching 250.7 as of 27 November 2021. 

Approach 1: Comparison of data to projections from the null model 

We first used a fitting window of 02 June 2020 to 30 September 2020 to 

parameterize the null model of no change in the reinfection hazard coefficient 

through time, and project the number of reinfections through 30 June 2021. Based 

on this, the number of incident reinfections was expected to be low prior to the 

second wave and to increase substantially during the second and third waves, 

peaking at a similar time to incident primary infections. The observed time series of 

suspected reinfections closely followed this pattern (Figure S5), although it fell 

slightly below the prediction interval during the third wave. Provincial-level analyses 

suggest that this deviation was driven primarily by the Western Cape, where the 

observed time series of suspected reinfections fell below the prediction interval near 

the peak of both waves two and three (Figure S5). In contrast, the observed time 

series of suspected reinfections consistently falls within the prediction interval for 

Gauteng and KwaZulu-Natal (Figure S5). This pattern may result from policies 

implemented only in the Western Cape that limited testing during the wave peaks. 

Alternatively, this deviation from the projection interval may have resulted from the 

narrow fitting window, which led to poor convergence of the estimate for the negative 
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binomial dispersion parameter and poor coverage of the projection intervals (Figure 

S7). 

Given that there was no evidence of divergence from the null projection during 

the second wave, and to improve convergence of the MCMC fitting algorithm, we 

repeated the fitting process using a fitting window of 02 June 2020 to 28 February 

2021. This substantially improved convergence with regard to estimation of the 

negative binomial dispersion parameter (Figure S6), as well as coverage of the 

projection interval, with the 7-day moving average of observed reinfections and most 

individual daily values falling within the projection interval from the beginning of the 

projection period though the end of the third wave (Figure 4). Since the beginning of 

November 2021, however, the 7-day moving average of observed reinfections has 

reached the upper bound of the projection interval, with most individual daily 

numbers well above the projection interval and increasing levels of deviation toward 

the end of the time series (Figure 4). This observed deviation from the projection 

under the null model is a signature of immune escape and the timing of this deviation 

suggests it is associated with the emergence of the Omicron variant. A similar 

pattern is seen in Gauteng as nationally, and high individual daily numbers of 

reinfections toward the end of the time series in KwaZulu-Natal suggest that a similar 

pattern may be emerging (Figure S4). No signature of immune escape is seen yet in 

the observed reinfections from Western Cape. If the high number of reinfections in 

Gauteng and nationally indicates that Omicron is able to evade immunity from prior 

infection, this pattern should become clear across provinces in by early-to-mid 

December. 
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Figure 4. Observed and expected temporal trends in reinfection numbers. Blue lines (points) 
represent the 7-day moving average (daily values) of suspected reinfections. Grey lines (bands) 
represent mean predictions (95% projection intervals) from the null model. The null model was fit to 
data on suspected reinfections through 28 February 2021. Comparison of data to projections from the 
null model over the projection period. The divergence observed reinfections from the projection 
interval in November is suggestive of immune escape. A and B: National. C and D: Gauteng. 

Approach 2: Empirical estimation of time-varying infection and reinfection 
hazards 

The estimated hazard coefficient for primary infection increases steadily through the 

end of the third wave, as expected under a combination of relaxing of restrictions, 

behavioural fatigue, and introduction of variants with increased transmissibility (Beta 

and Delta). The estimated hazard coefficient for reinfection, in contrast, remains 

relatively constant throughout this period, with the exception of an initial spike in mid- 

2020, when reinfection numbers (and the population eligible for reinfection) were 

very low. The mean ratio of reinfection hazard to primary infection hazard decreased 

slightly with each subsequent wave, from 0.15 in wave 1 to 0.12 in wave 2 and 0.09 

in wave 3. The absolute values of the hazard coefficients and hazard ratio are 
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sensitive to assumed observation probabilities for primary infections and reinfections; 

however, temporal trends are robust (Figure S5). 

The picture has changed following the end of the third wave. Since early 

October, the estimated hazard coefficient for primary infection has started to 

decrease, and the estimated reinfection hazard coefficient has simultaneously 

increased. This change became more marked since the beginning of November and 

is robust to the increases in vaccination coverage (Figure S9). The mean ratio of 

reinfection hazard to primary infection hazard for the period from 01 November 2021 

to 27 November 2021 is 0.25. 

These findings are consistent with the estimates from the generalized linear 

mixed model based on the reconstructed data set. In this analysis, the relative 

hazard ratio for wave 2 versus wave 1 was 0.75 (CI95: 0.59–0.97) and for wave 3 

versus wave 1 was 0.71 (CI95: 0.56–0.92). The relative hazard ratio for the period 

from 01 November 2021 to 27 November 2021 versus wave 1 was 2.39 (CI95: 1.88– 

3.11). 
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Figure 5. Empirical estimates of infection and reinfection hazards. A: Estimated time-varying hazard 
coefficients for primary infection (black) and reinfections (green). Colored bands represent wave 
periods, defined as the period for which the 7-day moving average of cases was at least 15% of the 
corresponding wave peak (purple = wave 1, pink = wave 2, orange = wave 3). B: Ratio of the 
empirical hazard for reinfections to the empirical hazard for primary infections 

 
 

Discussion 

Our analyses suggest that the cumulative number of reinfections observed through 

the end of wave 3 was consistent with the null model of no change in reinfection risk 

through time. Furthermore, our findings suggest that the relative hazard of reinfection 

versus primary infection has decreased with each subsequent wave of infections 

through September 2021, as would be expected if the risk of primary infection 

increased without a corresponding increase in reinfection risk. Based on these 

analyses, we conclude there was no population-level evidence of immune escape 

associated with emergence of the Beta or Delta variants. In contrast, the number of 

daily new reinfections has recently spiked and exceeds the 95% projection interval 

from the null model, accompanied by a dramatic increase in the hazard ratio for 

reinfection versus primary infection. The timing of these changes strongly suggests 

that they are driven by the emergence of the Omicron variant. 
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Differences in the time-varying force of infection, original and subsequent 

circulating lineages, testing strategies, and vaccine coverage limit the usefulness of 

direct comparisons of rates of reinfections across countries or studies. Pre-Omicron 

reinfection does however appear to be relatively uncommon. The PCR-confirmed 

reinfection rate ranged from 0% – 1.1% across eleven studies included in a 

systematic review (13). While none of the studies included in the systematic review 

reported increasing risk of reinfection over time, the duration of follow-up was less 

than a year and most studies were completed prior to the identification of the Beta 

and Delta variants of concern. Our findings for the period prior to the emergence of 

Omicron are consistent with results from the PHIRST-C community cohort study 

conducted in two locations in South Africa, which found that infection prior to the 

second wave provided 84% protection against reinfection during the second (Beta) 

wave (14), comparable to estimates of the level of protection against reinfection for 

wild type virus from the SIREN study in the UK (1). 

A preliminary analysis of reinfection trends in England suggested that the 

Delta variant may have a higher risk of reinfection compared to the Alpha variant 

(15); however, this analysis did not take into account the temporal trend in the 

population at risk for reinfection, which may have biased the findings. 

Our findings regarding the Beta and Delta variants are somewhat at odds with 

in vitro neutralization studies. Both the Beta and Delta variants are associated with 

decreased neutralization by some anti-receptor binding-domain (anti-RBD) and anti- 

N-terminal domain (anti-NTD) monoclonal antibodies though both Beta and Delta 

each remain responsive to at least one anti-RBD (4,5,16). In addition, Beta and Delta 

are relatively poorly neutralized by convalescent sera obtained from unvaccinated 

individuals infected with non-VOC virus (3–5,16). Lastly sera obtained from 
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individuals after both one and two doses of the BNT162b2 (Pfizer) or ChAdOx1 

(AstraZeneca) vaccines displayed lower neutralization of the Beta and Delta variants 

when compared to non-VOC and Alpha variant (5); although this does not have 

direct bearing on reinfection risk it is an important consideration for evaluating 

immune escape more broadly. Non-neutralizing antibodies and T-cell responses 

could explain the apparent disjuncture between our findings and the in vitro immune 

escape demonstrated by both Beta and Delta. 

Strengths of this study 

Our study has three major strengths. First, we analyzed a large routine national data 

set comprising all confirmed cases in the country, allowing a comprehensive analysis 

of suspected reinfections in the country. Second, we found consistent results using 

two different analytical methods, both of which accounted for the changing force of 

infection and increasing numbers of individuals at risk for reinfection. Third, our real- 

time routine monitoring was sufficient to detect a population-level signal of immune 

escape during the initial period of emergence of the Omicron variant in South Africa, 

prior to results from laboratory-based neutralization tests, providing timely 

information of importance to global public health planning. 

Limitations of this study 

The primary limitation of this study is that changes in testing practices, health- 

seeking behavior, or access to care have not been accounted for in these analyses. 

Estimates based on serological data from blood donors suggest substantial 

geographic variability in detection rates (18), which may contribute to the observed 

differences in reinfection patterns by province. Detection rates likely also vary 

through time and by other factors affecting access to testing, which may include 

occupation, age, and socioeconomic status. In particular, rapid antigen tests, which 
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were introduced in South Africa in late 2020, may be under-reported despite 

mandatory reporting requirements. Although we have incorporated adjustments that 

account for late reporting of antigen tests, if under-reporting of antigen tests was 

substantial and time-varying it could still influence our findings. However, comparing 

temporal trends in infection risk among those eligible for reinfection with the rest of 

the population, as in approach 2, mitigates against potential failure to detect a 

substantial increase in risk. 

Civil unrest during July 2021 severely disrupted testing in Gauteng and 

KwaZulu-Natal, the two most populous provinces in the country. As a result, case 

data are unreliable during the period of unrest and a key assumption of our models - 

that the force of infection is proportional to the number of positive tests - was violated 

during this period, resulting in increased misclassification of individuals regarding 

their status as to whether they are at risk of primary or re-infection. This effect of this 

misclassification on the signal of immune escape during the period of Omicron’s 

emergence would likely be small and would be expcted to bias subsequent 

reinfection hazard estimates downwards. 

Reinfections were not confirmed by sequencing or by requiring a negative test 

between putative infections. Nevertheless, the 90-day window period between 

consecutive positive tests reduces the possibility that suspected reinfections were 

predominantly the result of prolonged viral shedding. Furthermore, due to data 

limitations, we were unable to examine whether symptoms and severity in primary 

episodes correlate with protection against subsequent reinfection. 

Lastly, while vaccination may increase protection in previously infected 

individuals (19–22), vaccination coverage in South Africa was very low during much 
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of the study period. Nevertheless, increasing vaccination uptake may reduce the 

risks of both primary infection and reinfection. The vaccination status of individuals 

with suspected reinfections identified in this study was unknown. We conducted a 

sensitivity analysis to assess the extent to which vaccination may have influenced 

our findings and found that the vaccination rollout may partially explain the observed 

decline in the primary infection hazard coefficient. We would recommend a more 

nuanced incorporation of vaccination for application of our approach to other 

locations with higher vaccine coverage. 

Conclusion 

We find evidence of a substantial and ongoing increase in the risk of reinfection that 

is temporally consistent with the timing of the emergence of the Omicron variant in 

South Africa, suggesting that its selection advantage is at least partially driven by an 

increased ability to infect previously infected individuals. 

In contrast, we find no evidence that reinfection risk increased as a result of 

the emergence of Beta or Delta variants, suggesting that the selective advantage 

that allowed these variants to spread derived primarily from increased 

transmissibility, rather than immune escape. While laboratory-based data on 

neutralization of Omicron are not yet available, the discrepancy between the 

population-level evidence presented here and expectations based on laboratory- 

based neutralization assays for Beta and Delta highlights the need to identify better 

correlates of immunity for assessing immune escape in vitro. 

Immune escape from prior infection, whether or not Omicron can also evade 

vaccine derived immunity, has important implications for public health globally. 

Quantifying the extent of Omicron’s immune escape for both natural and vaccine- 
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derived immunity, as well as its transmissibility relative to other variants and impact 

on disease severity are urgent priorities to inform facility readiness planning and 

other public health operations. 

 

References 

1. Hall VJ, Foulkes S, Charlett A, Atti A, Monk EJM, Simmons R, et al. SARS-CoV- 
2 infection rates of antibody-positive compared with antibody-negative health- 
care workers in England: a large, multicentre, prospective cohort study (SIREN). 
The Lancet. 2021 Apr 17;397(10283):1459–69. 

 

2. Hansen CH, Michlmayr D, Gubbels SM, Mølbak K, Ethelberg S. Assessment of 
protection against reinfection with SARS-CoV-2 among 4 million PCR-tested 
individuals in Denmark in 2020: a population-level observational study. The 
Lancet. 2021 Mar 27;397(10280):1204–12. 

 

3. Cele S, Gazy I, Jackson L, Hwa S-H, Tegally H, Lustig G, et al. Escape of 
SARS-CoV-2 501Y.V2 from neutralization by convalescent plasma. Nature. 
2021 May;593(7857):142–6. 

 

4. Wibmer CK, Ayres F, Hermanus T, Madzivhandila M, Kgagudi P, Oosthuysen 
B, et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID- 
19 donor plasma. Nat Med. 2021 Apr;27(4):622–5. 

 

5. Planas D, Veyer D, Baidaliuk A, Staropoli I, Guivel-Benhassine F, Rajah MM, et 
al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. 
Nature. 2021 Jul 8;1–7. 

 

6. Liu C, Ginn HM, Dejnirattisai W, Supasa P, Wang B, Tuekprakhon A, et al. 
Reduced neutralization of SARS-CoV-2 B.1.617 by vaccine and convalescent 
serum. Cell. 2021 Aug 5;184(16):4220-4236.e13. 

 

7. Tegally H, Wilkinson E, Giovanetti M, Iranzadeh A, Fonseca V, Giandhari J, et 
al. Detection of a SARS-CoV-2 variant of concern in South Africa. Nature. 2021 
Apr;592(7854):438–43. 

 

8. Shu Y, McCauley J. GISAID: Global initiative on sharing all influenza data – 
from vision to reality. Eurosurveillance. 2017 Mar 30;22(13):30494. 

 

9. Network for Genomic Surveillance in South Africa (NGS-SA). SARS-CoV-2 
Sequencing Update 26 November 2021 [Internet]. Network for Genomic 
Surveillance in South Africa (NGS-SA); 2021. Available from: 
https://www.nicd.ac.za/wp-content/uploads/2021/11/Update-of-SA-sequencing- 
data-from-GISAID-26-Nov_Final.pdf 

 

10. National Institute for Communicable DIseases. The Daily COVID-19 Effective 
Reproductive Number (R) in South Africa: Week 47 2021 [Internet]. National 

https://doi.org/10.1101/2021.11.11.21266068
http://creativecommons.org/licenses/by-nc/4.0/
http://www.nicd.ac.za/wp-content/uploads/2021/11/Update-of-SA-sequencing-


medRxiv preprint doi: https://doi.org/10.1101/2021.11.11.21266068; this version posted December 2, 2021. The copyright holder for this 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 

perpetuity. 
It is made available under a CC-BY-NC 4.0 International license . 

Page 26 of 43 

 

 

Institute of Communicable DIseases; 2021 Nov. (The Daily COVID-19 Effective 
Reproductive Number (R) in South Africa). Report No.: Week 47 2021. 
Available from: https://www.nicd.ac.za/wp-content/uploads/2021/11/COVID-19- 
Effective-Reproductive-Number-in-South-Africa-week-47.pdf 

 

11. Health Department adds antigen tests to country’s official COVID-19 stats. 
Media Release, South African Government News Agency [Internet]. 2021 Nov 
23 [cited 2021 Nov 30]; Available from: https://www.sanews.gov.za/south- 
africa/health-department-adds-antigen-tests-countrys-official-covid-19-stats 

 

12. Gelman A, Rubin DB. Inference from Iterative Simulation Using Multiple 
Sequences. Statistical Science. 1992 Nov;7(4):457–72. 

 

13. Murchu EO, Byrne P, Carty PG, De Gascun C, Keogan M, O’Neill M, et al. 
Quantifying the risk of SARS-CoV-2 reinfection over time. Rev Med Virol 
[Internet]. 2021 May 27 [cited 2021 Nov 3]; Available from: 
https://onlinelibrary.wiley.com/doi/10.1002/rmv.2260 

 

14. Cohen C, Kleynhans J, von Gottberg A, McMorrow ML, Wolter N, Bhiman JN, et 
al. SARS-CoV-2 incidence, transmission and reinfection in a rural and an urban 
setting: results of the PHIRST-C cohort study, South Africa, 2020-2021 
[Internet]. Epidemiology; 2021 Jul [cited 2021 Nov 10]. Available from: 
http://medrxiv.org/lookup/doi/10.1101/2021.07.20.21260855 

 

15. Public Health England. SARS-CoV-2 variants of concern and variants under 
investigation - Technical briefing 19 [Internet]. Public Health England; 2021 Jul 
p. 55. (Technical briefing 19). Report No.: 19. Available from: 
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/att 
achment_data/file/1005517/Technical_Briefing_19.pdf 

 

16. Wang P, Nair MS, Liu L, Iketani S, Luo Y, Guo Y, et al. Antibody resistance of 
SARS-CoV-2 variants B.1.351 and B.1.1.7. Nature. 2021 May 6;593(7857):130– 
5. 

 

17. Cho A, Muecksch F, Schaefer-Babajew D, Wang Z, Finkin S, Gaebler C, et al. 
Anti-SARS-CoV-2 receptor-binding domain antibody evolution after mRNA 
vaccination. Nature. 2021 Oct 7;1–6. 

 

18. Vermeulen M, Mhlanga L, Sykes W, Coleman C, Pietersen N, Cable R, et al. 
Prevalence of anti-SARS-CoV-2 antibodies among blood donors in South Africa 
during the period January-May 2021 [Internet]. In Review; 2021 Aug [cited 2021 
Nov 3]. Available from: https://www.researchsquare.com/article/rs-690372/v2 

 

19. Stamatatos L, Czartoski J, Wan Y-H, Homad LJ, Rubin V, Glantz H, et al. 
mRNA vaccination boosts cross-variant neutralizing antibodies elicited by 
SARS-CoV-2 infection. Science. 2021 Jun 25;372(6549):1413–8. 

 

20. Krammer F, Srivastava K, Alshammary H, Amoako AA, Awawda MH, Beach 
KF, et al. Antibody Responses in Seropositive Persons after a Single Dose of 
SARS-CoV-2 mRNA Vaccine. N Engl J Med. 2021 Apr 8;384(14):1372–4. 

https://doi.org/10.1101/2021.11.11.21266068
http://creativecommons.org/licenses/by-nc/4.0/
http://www.nicd.ac.za/wp-content/uploads/2021/11/COVID-19-
http://www.sanews.gov.za/south-
http://medrxiv.org/lookup/doi/10.1101/2021.07.20.21260855
http://www.researchsquare.com/article/rs-690372/v2


medRxiv preprint doi: https://doi.org/10.1101/2021.11.11.21266068; this version posted December 2, 2021. The copyright holder for this 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 

perpetuity. 
It is made available under a CC-BY-NC 4.0 International license . 

Page 27 of 43 

 

 

21. Saadat S, Rikhtegaran Tehrani Z, Logue J, Newman M, Frieman MB, Harris 
AD, et al. Binding and Neutralization Antibody Titers After a Single Vaccine 
Dose in Health Care Workers Previously Infected With SARS-CoV-2. JAMA. 
2021 Apr 13;325(14):1467. 

 

22. Lustig Y, Nemet I, Kliker L, Zuckerman N, Yishai R, Alroy-Preis S, et al. 
Neutralizing Response against Variants after SARS-CoV-2 Infection and One 
Dose of BNT162b2. N Engl J Med. 2021 Jun 24;384(25):2453–4. 

 

23. Latest Vaccine Statistics - SA Corona Virus Online Portal [Internet]. SA Corona 
Virus Online Portal. [cited 2021 Nov 30]. Available from: 
https://sacoronavirus.co.za/latest-vaccine-statistics/ 

 

24. Sisonke - Protecting Healthcare Workers [Internet]. [cited 2021 Mar 19]. 
Available from: http://sisonkestudy.samrc.ac.za/ 

 

25. Pouwels KB, Pritchard E, Matthews PC, Stoesser N, Eyre DW, Vihta K-D, et al. 
Effect of Delta variant on viral burden and vaccine effectiveness against new 
SARS-CoV-2 infections in the UK. Nat Med. 2021 Oct 14;1–9. 

 
 
 

 
Ethics statements 

Ethical approval 

Ethical approval: This study has received ethical clearance from University of the 

Witwatersrand (Clearance certificate number M210752, formerly M160667) and 

approval under reciprocal review from Stellenbosch University (Project ID 19330, 

Ethics Reference Number N20/11/074_RECIP_WITS_M160667_COVID-19). 

 

Data availability statement 

Data and code will be made available at https://github.com/jrcpulliam/reinfections 

and DOI: 10.5281/zenodo.5745339. 

The following data are included in the repository: 

 

• Counts of reinfections and primary infections by province, age group (5-year 
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• Model output: posterior samples from the MCMC fitting procedure and 
simulation results 

 
Requests for additional data must be made in writing to the National Institute for 
Communicable Diseases, South Africa. 
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Supplementary Material 

Supplementary Methods 

Data validation 

To assess validity of the data linkage procedure and thus verify whether individuals 

identified as having suspected reinfections did in fact have positive test results at 

least 90 days apart, we conducted a manual review of a random sample of 

suspected second infections occurring on or before 20 January 2021 (n=585 of 

6022; 9.7%). This review compared fields not used for linkages (address, cell-phone 

numbers, email addresses, facility, and health-care providers) between records in 

the NMC-SS and positive test line lists. Where uncertainty remained and contact 

details were available, patients or next-of-kin were contacted telephonically to verify 

whether the individual had received multiple positive test results. 

Of the 585 randomly selected individuals with possible reinfections in the 

validation sample, 562 (96%) were verified as the same individual based on fields 

not used to create the linkages; the remaining 23 (4%) were either judged not a 

match or to have insufficient evidence (details captured by the clinician or testing 

laboratory) to determine whether the records belonged to the same individual. 

Descriptive analysis 

We compared the age, gender, and province of individuals with suspected 

reinfections to individuals eligible for reinfection (i.e., who had a positive test result at 

least 90 days prior to 27 November 2021). 

We did not calculate overall incidence rates by wave because the force of 

infection is highly variable in space and time, and the period incidence rate is also 

influenced by the temporal pattern of when people become eligible for reinfection. 
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Incidence rate estimates would therefore be strongly dependent on the time frame of 

the analysis and not comparable to studies from other locations or time periods. 
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Supplementary Results 

Distribution of suspected reinfections by province 

Suspected reinfections were identified in all nine provinces (Figure 2B). The 

reinfection rate was highest in Western Cape, where 8,185 of 487,986 eligible 

primary infections (1.68%) had suspected reinfections and lowest in Limpopo (1,165 

of 120,777; 0.96%). For comparison, the national reinfection rate was 120,777; 

1.28% (35,670 of 2,796,982 eligible primary infections). Numbers for all provinces 

are provided in Table S1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. Descriptive analysis of suspected reinfections: Percentage of eligible primary infections 
with suspected reinfections, by province. 

 
 
 
 

Distribution of suspected reinfections by province, South Africa, March 2020 
to November 2021 

Province No 
reinfection 

One 
reinfection 

Two 
reinfections 

Total 

EASTERN CAPE 268,224 2,842 13 271,079 

FREE STATE 148,143 1,779 13 149,935 
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GAUTENG 901,340 11,624 127 913,091 

KWAZULU- 
NATAL 

475,881 5,201 41 481,123 

LIMPOPO 119,612 1,150 15 120,777 

MPUMALANGA 143,987 1,822 29 145,838 

NORTH WEST 143,561 1,859 19 145,439 

NORTHERN 
CAPE 

80,761 949 2 81,712 

WESTERN CAPE 479,801 8,112 73 487,986 

UNKNOWN 2 0 0 2 

Total 2,761,312 35,338 332 2,796,982 
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Breakdown of suspected reinfections by sex and age group 

Among 2,737,812 eligible primary infections with both age and sex recorded, 20,903 

of 1,551,919 females (1.35%) and 14,686 of 1,185,893 males (1.24%) had 

suspected reinfections. Relative to individuals with no identified reinfection, 

reinfections were concentrated in adults between the ages of 20 and 55 years 

(Figure 2C). Numbers for all age group-sex combinations are provided in Table S2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S2. Descriptive analysis of suspected reinfections: Age distribution of individuals with 
suspected reinfections (blue) versus eligible individuals with no detected reinfection (yellow), by sex. 
Solid lines indicate females; dashed lines indicate males. 

 

Breakdown of suspected reinfections by sex and age group (years), South 
Africa, March 2020 to November 2021 

Sex Age 
group 

No 
reinfection 

One 
reinfection 

Two 
reinfections 

Total 

F (0,20] 188,278 1,543 15 189,836 

F (20,40] 615,785 10,916 114 626,815 

F (40,60] 521,913 6,842 52 528,807 

F (60,80] 176,724 1,207 13 177,944 

F (80,Inf] 28,316 201 0 28,517 

M (0,20] 156,978 1,124 7 158,109 

M (20,40] 446,158 7,029 79 453,266 
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M (40,60] 415,274 5,217 45 420,536 

M (60,80] 138,306 1,089 5 139,400 

M (80,Inf] 14,491 89 2 14,582 
 Total 2,702,223 35,257 332 2,737,812 

https://doi.org/10.1101/2021.11.11.21266068
http://creativecommons.org/licenses/by-nc/4.0/


medRxiv preprint doi: https://doi.org/10.1101/2021.11.11.21266068; this version posted December 2, 2021. The copyright holder for this 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in 

perpetuity. 
It is made available under a CC-BY-NC 4.0 International license . 

Page 37 of 43 

 

 

Timing of primary infections and reinfections by province 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S3. Number of detected primary infections (black), suspected reinfections (blue), and 
suspected third infections (red), by province. Lines represent 7-day moving averages. The y-axis is 
shown on a log scale. 
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Province-level comparison of data to projections from the null 
model 

Fitting through 28 February 2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S4. Observed and expected temporal trends in reinfection numbers, for provinces with 
sufficient numbers of suspected reinfections. Blue lines (points) represent the 7-day moving average 
(daily values) of suspected reinfections. Grey lines (bands) represent mean predictions (95% 
projection intervals) from the null model. A and B: KwaZulu-Natal. C and D: Western Cape. 
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Fitting through 30 September 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S5. Observed and expected temporal trends in reinfection numbers, for provinces with 
sufficient numbers of suspected reinfections. Blue lines (points) represent the 7-day moving average 
(daily values) of suspected reinfections. Grey lines (bands) represent mean predictions (95% 
projection intervals) from the null model. A and B: Gauteng. C and D: KwaZulu-Natal. E and F: 
Western Cape. 
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Approach 1: Convergence diagnostics 

Fitting through 28 February 2021 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S6. Convergence diagnostics and density of the posterior distribution for MCMC fits, based on 
a fitting window through 28 February 2021. A and B: MCMC chains for each parameter. C: Gelman- 
Rubin values (a.k.a. potential scale reduction factors) for each parameter; values less than 1.1 
indicate sufficient mixing of chains to suggest convergence. D, G, I: posterior density for each 
parameter and the log likelihood. E, F, H: 2-D density plots showing correlations between parameters 
and the log likelihood. 
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Fitting through 30 September 2020 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S7. Convergence diagnostics and density of the posterior distribution for MCMC fits, based on 
a fitting window through 30 September 2020. A and B: MCMC chains for each parameter. C: Gelman- 
Rubin values (a.k.a. potential scale reduction factors) for each parameter; values less than 1.1 
indicate sufficient mixing of chains to suggest convergence. D, G, I: posterior density for each 
parameter and the log likelihood. E, F, H: 2-D density plots showing correlations between parameters 
and the log likelihood. 
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Approach 2: Sensitivity analysis 

Sensitivity to assumed observation probabilities 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure S8. Sensitivity analysis of empirical hazard ratio estimates to assumed observation 
probabilities for primary infections and reinfections. Estimates are shown for the full range of 
probabilities for which the overall mean relative hazard is between 0 and 1. The white polygon 
encloses the most plausible estimates (i.e. consistent with relative reinfection risk observed in the 
SIREN study (1) and observation probabilities for primary infection consistent with estimates based on 
seroprevalence data (18)). Top: Mean relative empirical hazard for reinfections versus primary 
infections in each wave, as a function of assumed observation probabilities for primary infections 

(𝑝./0) and reinfections (𝑝./0! ). A: wave 1, B: wave 2, C: wave 3. Bottom: Percent change in the mean 

relative empirical hazard for reinfections versus primary infections in waves 2 (D) and 3 (E) relative to 
wave 1, as a function of assumed observation probabilities for primary infections (𝑝./0) and 
reinfections (𝑝./0! ). 
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Sensitivity to incorporation of vaccine rollout 

In our main analysis, we did not account for the effect of vaccination on the infection 

hazards in Approach 2. To assess the robustness of our conclusion that the primary 

reinfection hazard has been declining since early October, we performed a sensitivity 

analysis by making an assumption about vaccination on the other extreme: i.e., we 

assumed that all the effectively vaccinated individuals were susceptible to primary 

infection at the time of vaccination. This approach allows us to bound the effect of 

vaccination on the outcomes of interest. We obtained daily numbers of vaccinated 

individuals from publicly available data (23) and considered vaccine efficacy against 

infection by the Delta variant (24,25) to obtain numbers of effectively vaccinated 

people in South Africa. We assumed a two-week lag between day of vaccination and 

effective protection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S9. Sensitivity analysis to the impact of vaccine rollout. Analogous to Figure 5, but assuming 
the maximum possible impact of vaccination. 
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